3.823 \(\int \frac{1}{\cos ^{\frac{7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\)

Optimal. Leaf size=128 \[ \frac{2 \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 b d}+\frac{2 a^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}+\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac{2 a \sin (c+d x)}{b^2 d \sqrt{\cos (c+d x)}}+\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(2*a*EllipticE[(c + d*x)/2, 2])/(b^2*d) + (2*EllipticF[(c + d*x)/2, 2])/(3*b*d) + (2*a^2*EllipticPi[(2*a)/(a +
 b), (c + d*x)/2, 2])/(b^2*(a + b)*d) + (2*Sin[c + d*x])/(3*b*d*Cos[c + d*x]^(3/2)) - (2*a*Sin[c + d*x])/(b^2*
d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.540456, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 10, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.435, Rules used = {4264, 3851, 4102, 4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ \frac{2 a^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}+\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac{2 a \sin (c+d x)}{b^2 d \sqrt{\cos (c+d x)}}+\frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b d}+\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(7/2)*(a + b*Sec[c + d*x])),x]

[Out]

(2*a*EllipticE[(c + d*x)/2, 2])/(b^2*d) + (2*EllipticF[(c + d*x)/2, 2])/(3*b*d) + (2*a^2*EllipticPi[(2*a)/(a +
 b), (c + d*x)/2, 2])/(b^2*(a + b)*d) + (2*Sin[c + d*x])/(3*b*d*Cos[c + d*x]^(3/2)) - (2*a*Sin[c + d*x])/(b^2*
d*Sqrt[Cos[c + d*x]])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3851

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[(d^3*Cot[e
 + f*x]*(d*Csc[e + f*x])^(n - 3))/(b*f*(n - 2)), x] + Dist[d^3/(b*(n - 2)), Int[((d*Csc[e + f*x])^(n - 3)*Simp
[a*(n - 3) + b*(n - 3)*Csc[e + f*x] - a*(n - 2)*Csc[e + f*x]^2, x])/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a,
b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 3]

Rule 4102

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1)*(d*Csc[e + f*x])^(n - 1))/(b*f*(m + n + 1)), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a*C
*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{7}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx\\ &=\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)}+\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{a}{2}+\frac{1}{2} b \sec (c+d x)-\frac{3}{2} a \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx}{3 b}\\ &=\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 a \sin (c+d x)}{b^2 d \sqrt{\cos (c+d x)}}+\frac{\left (4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{3 a^2}{4}+a b \sec (c+d x)+\frac{1}{4} \left (3 a^2+b^2\right ) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{3 b^2}\\ &=\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 a \sin (c+d x)}{b^2 d \sqrt{\cos (c+d x)}}+\frac{\left (4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{3 a^3}{4}+\frac{1}{4} a^2 b \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx}{3 a^2 b^2}+\frac{\left (a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{b^2}\\ &=\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 a \sin (c+d x)}{b^2 d \sqrt{\cos (c+d x)}}+\frac{a^2 \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b^2}+\frac{\left (a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{b^2}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \, dx}{3 b}\\ &=\frac{2 a^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 (a+b) d}+\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 a \sin (c+d x)}{b^2 d \sqrt{\cos (c+d x)}}+\frac{a \int \sqrt{\cos (c+d x)} \, dx}{b^2}+\frac{\int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 b}\\ &=\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b d}+\frac{2 a^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 (a+b) d}+\frac{2 \sin (c+d x)}{3 b d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 a \sin (c+d x)}{b^2 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 4.66451, size = 213, normalized size = 1.66 \[ \frac{\frac{6 \sin (c+d x) \left (2 b (a+b) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right ),-1\right )-\left (a^2-2 b^2\right ) \Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{b \sqrt{\sin ^2(c+d x)}}+8 b \left (2 \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )-\frac{2 b \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )+\frac{2 \left (9 a^2+2 b^2\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{4 \sin (c+d x) (b-3 a \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)}}{6 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(7/2)*(a + b*Sec[c + d*x])),x]

[Out]

((2*(9*a^2 + 2*b^2)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) + 8*b*(2*EllipticF[(c + d*x)/2, 2] - (2
*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b)) + (4*(b - 3*a*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^
(3/2) + (6*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]
], -1] - (a^2 - 2*b^2)*EllipticPi[-(a/b), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b*Sqrt[Sin[c + d*x]
^2]))/(6*b^2*d)

________________________________________________________________________________________

Maple [B]  time = 4.096, size = 450, normalized size = 3.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))-
2*a^3/b^2/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+si
n(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))-2*a/b^2*(-(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*
x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)
^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(7/2)/(a+b*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(7/2)), x)